





# higher education & training

Department:

Higher Education and Training TEPUBLIC OF SOUTH AFRICA

T1200(E)(J23)T **AUGUST 2010** 

NATIONAL CERTIFICATE

# MECHANOTECHNOLOGY N3

(8190373)

23 July (X-Paper) 09:00 - 12:00

Calculators may be used.

This question paper consists of 7 pages, 2 sheets with tables and a formula sheet.

. . ÷

# DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS

MARKS: 100

### INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- Number the answers correctly according to the numbering system used in this 3. question paper.
- 4. ALL the drawings must be large, clear, neat and in good proportion.
- Keep questions and subsections of questions together. 5.
- 6. Write neatly and legibly.

## QUESTION 1: POWER TRANSMISSION

1.1 A 22 N SPC wedge belt drive is to be installed between an electrical motor and a belt conveyor. The following information is known:

Speed of the pulley on the electric motor

Speed ratio

Design power of electrical motor

Duty operation type Duty hours per day

Type of start

Approximate centre distance

1 245 r/min

1.59:1

36 kW

'Medium'

11 (eleven) hrs

'Soft'

± 1 400 mm

Refer to TABLE 1 and TABLE 2 (attached).

1.1.1 Determine the service factor.

1.1.2 Determine the pitch diameter of both pulleys. (1)

(2)

|       | <u>.</u>                                                  | (1)   |
|-------|-----------------------------------------------------------|-------|
| 1.1.3 | Determine the correct centre distance.                    | (1)   |
| -     | Determine the length of the belt.                         | ( ' / |
| 1.1.4 | Determine the length of the                               | (1)   |
| 1.1.5 | Determine the correction factor.                          | (2)   |
| 1.1.6 | Calculate the speed of the belt conveyor pulley in r/min. | • • • |
|       | Out of the decise power                                   | (2)   |
| 1.1.7 | Calculate the design power.                               |       |

1.2 Refer to FIGURE 1 of the gear assembly and answer the following questions:



## FIGURE 1

|     | 1.2.1<br>1.2.2 | What type of gears are shown? State the purposes of this type of gears. | (1)<br>(2)         |
|-----|----------------|-------------------------------------------------------------------------|--------------------|
| 1.3 | Name tl        | ne FOUR main categories that clutches can be grouped in.                | (4)                |
| 1.4 |                | describe THREE disadvantages of worm and worm-wheel gears.              | (3)<br><b>[20]</b> |

## QUESTION 2: BRAKES

Briefly describe FIVE disadvantages of the mechanical brake system. [5]

#### QUESTION 3: BEARINGS

| <b>ગ</b> . I | factors. State FIVE of these factors. |         |
|--------------|---------------------------------------|---------|
|              | factors. State FIVE of these factors. | n basic |
|              | order to these factors.               | (5)     |
|              |                                       | (0)     |

Refer to FIGURE 2 of the anti-friction bearing and answer the following questions:



#### FIGURE 2

| 3.2.1 | Label the different parts (A – C) as indicated. Write the answer next to the letter (A – C) in the ANSWER BOOK. |             |
|-------|-----------------------------------------------------------------------------------------------------------------|-------------|
|       |                                                                                                                 | (3)         |
| 3.2.2 | Name the type of load that this bearing is capable of carrying.                                                 | (1)         |
| 3.2.3 | Name the type of anti-friction bearing.                                                                         | (4)         |
| •     | <b>G</b>                                                                                                        | (1)<br>[10] |

# QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION

- 4.1 Pump slip can be defined as the difference between the theoretical and real flow rate. Briefly describe FIVE reasons for this. (5)
   4.2 Briefly explain the term *cavitation* with regard to water pumps. (2)
- 4.3 Briefly describe THREE disadvantages of the direct cooling system in contrast with the indirect cooling system. (3)

Refer to FIGURE 3 of the water unit and answer the following questions:



FIGURE 3

| 4.4.1 | Label the different parts $(A - E)$ as indicated. Write the answer next to the letter $(A - E)$ in the ANSWER BOOK. | (5) |
|-------|---------------------------------------------------------------------------------------------------------------------|-----|
|       |                                                                                                                     | (4) |

(1)

4.4.2 Briefly describe the purpose of part B.

[16]

# QUESTION 5: HYDRAULICS AND PNEUMATICS

5.1 The work done in cylinder B causes a force of 850 N to be exerted in cylinder A of a hydraulic system. Assume no loss of energy.

Use  $\pi = 3,1416$ 

The area of plunger A =  $0.6 \text{ m}^2$ The area of plunger B =  $0.2 \text{ m}^2$ 

5.1.1 Calculate the diameter of plunger A in mm. (2)

5.1.2 Calculate the force exerted on plunger B. Express the answer in N. (3)

Refer to FIGURE 4 of the line diagram of a basic hydraulic system and answer the following question.



FIGURE 4

Label the different parts (A - E) as indicated. Write the answer next to the letter (A - E) in the ANSWER BOOK.

(5) [10]

# QUESTION 6: INTERNAL COMBUSTION ENGINES

6.1 Briefly describe THREE functions of a blower when fitted to a two-stroke diesel engine.

(3)

- 6.2 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'true' or 'false' next to the question number (6.2.1 6.2.2) in the ANSWER BOOK.
  - 6.2.1 The working principle of the two-stroke petrol engine is based on four phases, namely the induction phase, compression phase, power phase and exhaust phase.

6.2.2 The combustion chamber of a diesel engine is relatively larger when compared to that of a petrol engine.

(1)

(1)

[5]

# QUESTION 7: CRANES AND LIFTING MACHINES

| 7.1   | Briefly describe THREE advantages of the load limiter as a safety device on an overhead travelling crane.                                                               | (3)                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 7.2   | Give FOUR reasons for the distortion of the lay of a steel rope.                                                                                                        | (4)<br><b>[7]</b>        |
| QUEST | ION 8: MATERIAL AND MATERIAL PROCESSES                                                                                                                                  |                          |
| 8.1   | Metals are identified according to their colour codes in the industry. Give the identifying colour codes for the following metals as standardised by the SABS for:      |                          |
|       | <ul> <li>8.1.1 Pipeline steel</li> <li>8.1.2 High carbon steel</li> <li>8.1.3 Low alloy steel</li> <li>8.1.4 Low carbon steel</li> </ul>                                | (1)<br>(1)<br>(1)<br>(1) |
| 8.2   | Briefly describe the general behaviour of aluminium when it is hit with a hammer.                                                                                       | (3)<br><b>[7]</b>        |
| QUES  | TION 9: INDUSTRIAL ORGANISATION AND PLANNING                                                                                                                            |                          |
| 9.1   | Name FOUR types of disciplinary actions that an enterprise can take against any personnel member.                                                                       | (4)                      |
| 9.2   | Briefly describe FOUR advantages of a written communication.                                                                                                            | (4)                      |
| 9.3   | Downward communication is a method of communicating from management to staff. Describe FOUR methods how this downward communication can be promoted in an organisation. | (4)<br><b>[12]</b>       |
| QUES  | STION 10: ENTREPRENEURSHIP                                                                                                                                              |                          |
| 10.1  | Briefly explain the term entrepreneurship.                                                                                                                              | (4)                      |
| 10.2  | State FOUR personal factors of a prospective entrepreneur that could influence the success of any new business.                                                         | (4)<br><b>[8]</b>        |
|       | TOTAL:                                                                                                                                                                  | 100                      |
|       | ·                                                                                                                                                                       |                          |

TABLE 1
SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

|                                                                                                                                    | <del>                                     </del> | TVr        | SEC OF I     | DDINAC   | 200        | <del></del> |   |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|--------------|----------|------------|-------------|---|
|                                                                                                                                    | <u> </u>                                         |            |              | PRIME MO |            |             |   |
|                                                                                                                                    |                                                  | 'Soft' sta |              |          | Heavy' st  | tarts       |   |
|                                                                                                                                    | Hou                                              | ırs per da | y duty       | Hot      | ırs per da | ay duty     | _ |
| TYPES OF DRIVEN MACHINES                                                                                                           | 10 and<br>under                                  | 10 to      | Over         | 10 and   | 10 to      | Over        |   |
| Class 1 - Light duty                                                                                                               |                                                  | 16         | <del> </del> |          | 16         | 10          |   |
| Blowers and fans Centrifugal compressors and pumps Belt conveyors (uniformly loaded)                                               | 1,0                                              | 1,1        | 1,2          | 1,1      | 1,2        | 1,3         |   |
| Class 2 – Medium duty Blowers and fans Rotary compressors and pumps Belt conveyors (not uniformly loaded) Generators               | 1,1                                              | 1,2        | 1,3          | 1,2      | 1,3        | 1,4         |   |
| Class 3 – Heavy duty Brick machinery Compressors and pumps (reciprocating) Conveyors (heavy duty) Hammer mills Punches and presses | 1,2                                              | 1,3        | 1,4          | 1,4      | 1,5        | 1,6         |   |
| Class 4 – Extra heavy duty<br>Crushers<br>Mills                                                                                    | 1,3                                              | 1,4        | 1,5          | 1,5      | 1,6        | 1,8         |   |

TABLE 2

CENTRE DISTANCES FOR 22 N SPC WEDGE BELT DRIVES

|                |                      |                   |                              |         |          |                   |     |               |       |       |             |       |       |       |       |       | !     |       |
|----------------|----------------------|-------------------|------------------------------|---------|----------|-------------------|-----|---------------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|
| Com            | oined ar             | c and b           | Combined arc and belt length | <b></b> |          | 0,80              |     |               | 0,85  |       |             |       | 06'0  |       |       |       | 0,95  |       |
|                | Correc               | Correction factor | ctor                         | +       |          |                   |     |               |       |       |             |       |       |       |       |       |       |       |
|                | Pitch<br>diameter of | th<br>ter of      | Power per                    | r per   |          |                   |     |               |       | m     | BELT LENGTH | NGTH  |       |       |       |       |       |       |
| Speed<br>Ratio | pulleys              | sys               | 096                          | 1 440   |          |                   |     | 2 280         | 2 500 | 2 650 | 2 800       | 3 000 | 3 150 | 3 350 | 3 550 | 3 750 | 4 000 | 4 250 |
|                | Driver               | Driven            | r/min                        | r/min   | 2 000    | 2 000 2 120 2 240 |     |               | - 1   |       |             | -     |       |       |       | 3     |       | 2,04  |
| 4<br>0         | 100%                 | 630               |                              | 49,15   | 1        | 1                 | 1   | ı             | i     | ı     | 280         | 682   | 758   | 829   | 096   | 1 060 | 1 180 | 2     |
| 00.1           | 2                    | 7 (2              | 25.19                        | 33.63   | ,        | 443               | 504 | 565           | 636   | 711   | 787         | 887   | 963   | 1 063 | 1 163 | 1 264 | 1 389 | 1 514 |
| , 58<br>1, 58  | 2000                 | 7                 | , ,                          | 5 6     | C P G    | 602               | 662 | 723           | 793   | 898   | 943         | 1 043 | 1 119 | 1 219 | 1 319 | 1419  | 1 544 | 1 669 |
| 1,58           | 224                  | 355               | 14,82                        | 0,61    | 247      | 200               | 1   | )<br> -<br> - | . •   | _     |             |       | ,     |       |       |       |       | •     |
| (              | i,                   | C<br>U            | 27.46                        | 36.17   | 1        | 1                 | 471 | 532           | 603   | 629   | 755         | 855   | 931   | 1 031 | 1 131 | 1 232 | 1 357 | 1 482 |
| 1,59           | 315                  | 000               | 21,12                        |         |          | 575               | 637 | 697           | 767   | 842   | 918         | 1 018 | 1 093 | 1 193 | 1 293 | 1 394 | 1 519 | 1 644 |
| 1,59           | 236                  | 375               | 16,50                        | 22,09   | <u>0</u> |                   | 5   | · (           | 7     | 0     | 788         | 987   | 1 062 | 1 162 | 1 263 | 1 363 | 1 488 | 1 613 |
| 1,60           | 250                  | 400               | 18,44                        | 24,71   | 484      | 545               | 909 | 999           | 05/   |       | <u> </u>    | 3     |       |       |       | . 841 | 968   | 1 094 |
| 1 60           | 500                  | 800               | 49,26                        | 1       | 1        | ı                 | •   | 1             | 1     | ,     | ,           | ,     | ,     |       | 367   |       |       | _     |
| 2              |                      |                   |                              |         |          |                   |     |               |       |       |             |       |       |       |       |       |       |       |

#### **MECHANOTECHNOLOGY N3**

#### FORMULA SHEET

Any applicable formula may also be used.

- 1. Design power = Power (electrical motor) × service factor
- 2. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 3. Belt length (L) = [(Pitch diameter of larger pulley + Pitch diameter of smaller pulley)  $\times$  1,57] + (2  $\times$  Centre Distance)
- 4. Force  $(F) = Pressure(P) \times Area(A)$
- 5. Work done (W) = Force (F)  $\times$  Distance (s)
- 6. Volume (V) = Area of base (A)  $\times$  Perpendicular height  $(\bot h)$

